1,009 research outputs found

    Inside the brain of an elite athlete: The neural processes that support high achievement in sports

    Get PDF
    Events like the World Championships in athletics and the Olympic Games raise the public profile of competitive sports. They may also leave us wondering what sets the competitors in these events apart from those of us who simply watch. Here we attempt to link neural and cognitive processes that have been found to be important for elite performance with computational and physiological theories inspired by much simpler laboratory tasks. In this way we hope to inspire neuroscientists to consider how their basic research might help to explain sporting skill at the highest levels of performance

    High sensitivity of 17O NMR to p-d hybridization in transition metal perovskites: first principles calculations of large anisotropic chemical shielding

    Full text link
    A first principles embedded cluster approach is used to calculate O chemical shielding tensors, sigma, in prototypical transition metal oxide ABO_3 perovskite crystals. Our principal findings are 1) a large anisotropy of sigma between deshielded sigma_x ~ sigma_y and shielded sigma_z components (z along the Ti-O bond); 2) a nearly linear variation, across all the systems studied, of the isotropic sigma_iso and uniaxial sigma_ax components, as a function of the B-O-B bond asymmetry. We show that the anisotropy and linear variation arise from large paramagnetic contributions to sigma_x and sigma_y due to virtual transitions between O(2p) and unoccupied B(nd) states. The calculated isotropic delta_iso and uniaxial delta_ax chemical shifts are in good agreement with recent BaTiO_3 and SrTiO_3 single crystal 17O NMR measurements. In PbTiO_3 and PbZrO_3, calculated delta_iso are also in good agreement with NMR powder spectrum measurements. In PbZrO_3, delta_iso calculations of the five chemically distinct sites indicate a correction of the experimental assignments. The strong dependence of sigma on covalent O(2p)-B(nd) interactions seen in our calculations indicates that 17O NMR spectroscopy, coupled with first principles calculations, can be an especially useful tool to study the local structure in complex perovskite alloys.Comment: 12 pages, 3 figures, and 3 Table

    Non-equilibrium phase transitions in biomolecular signal transduction

    Full text link
    We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative system described by a master equation. We use operator and functional integral methods from reaction-diffusion theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class of minimal models of switches, showing how all critical properties for switch behavior can be computed within a unified framework

    A new method for tracking of motor skill learning through practical application of Fitts’ law

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund.A novel upper limb motor skill measure, task productivity rate (TPR) was developed integrating speed and spatial error, delivered by a practical motor skill rehabilitation task (MSRT). This prototype task involved placement of 5 short pegs horizontally on a spatially configured rail array. The stability of TPR was tested on 18 healthy right-handed adults (10 women, 8 men, median age 29 years) in a prospective single-session quantitative within-subjects study design. Manipulations of movement rate 10% faster and slower relative to normative states did not significantly affect TPR, F(1.387, 25.009) = 2.465, p = .121. A significant linear association between completion time and error was highest during the normative state condition (Pearson's r = .455, p < .05). Findings provided evidence that improvements in TPR over time reflected motor learning with possible changes in coregulation behavior underlying practice under different conditions. These findings extend Fitts’ law theory to tracking of practical motor skill using a dexterity task, which could have potential clinical applications in rehabilitation

    Lesbian and bisexual women's experiences of sexuality-based discrimination and their appearance concerns

    Get PDF
    Lesbian and bisexual women frequently experience sexuality-based discrimination, which is often based on others' judgements about their appearance. This short article aims to explore whether there is a relationship between lesbian and bisexual women's experiences of sexuality-based discrimination and their satisfaction with the way that they look. Findings from an online survey suggest that discrimination is negatively related to appearance satisfaction for lesbian women, but not for bisexual women. It is argued that this difference exists because lesbian appearance norms are more recognisable and distinctive than bisexual women's appearance norms

    Evidence of strategic periodicities in collective conflict dynamics

    Full text link
    We analyze the timescales of conflict decision-making in a primate society. We present evidence for multiple, periodic timescales associated with social decision-making and behavioral patterns. We demonstrate the existence of periodicities that are not directly coupled to environmental cycles or known ultraridian mechanisms. Among specific biological and socially-defined demographic classes, periodicities span timescales between hours and days, and many are not driven by exogenous or internal regularities. Our results indicate that they are instead driven by strategic responses to social interaction patterns. Analyses also reveal that a class of individuals, playing a critical functional role, policing, have a signature timescale on the order of one hour. We propose a classification of behavioral timescales analogous to those of the nervous system, with high-frequency, or α\alpha-scale, behavior occurring on hour-long scales, through to multi-hour, or ÎČ\beta-scale, behavior, and, finally Îł\gamma periodicities observed on a timescale of days.Comment: 22 pages, 7 figures, 1 table. Accepted for publication in Journal of the Royal Society Interfac

    Measurements of Charged Current Reactions of Îœe\nu_e on 12C^{12}C

    Get PDF
    Charged Current reactions of Îœe\nu_e on 12C^{12}C have been studied using a ÎŒ+\mu^+ decay-at-rest Îœe\nu_e beam at the Los Alamos Neutron Science Center. The cross section for the exclusive reaction 12C(Îœe,e−)12Ng.s.^{12}C(\nu_e,e^-)^{12}N_{g.s.} was measured to be (8.9±0.3±0.9)×10−42(8.9\pm0.3\pm0.9)\times10^{-42} cm2^2. The observed energy dependence of the cross section and angular distribution of the outgoing electron agree well with theoretical expectations. Measurements are also presented for inclusive transitions to 12N^{12}N excited states, 12C(Îœe,e−)12N∗^{12}C(\nu_e,e^-)^{12}N^* and compared with theoretical expectations. The measured cross section, (4.3±0.4±0.6)×10−42(4.3\pm0.4\pm0.6)\times10^{-42} cm2^2, is somewhat lower than previous measurements and than a continuum random phase approximation calculation. It is in better agreement with a recent shell model calculation.Comment: 34 pages, 18 figures, accepted to PRC, replaced with the accepted on

    Ground states of a one-dimensional lattice-gas model with an infinite range nonconvex interaction. A numerical study

    Full text link
    We consider a lattice-gas model with an infinite range pairwise noncovex interaction. It might be relevant, for example, for adsorption of alkaline elements on W(112) and Mo(112). We study a competition between the effective dipole-dipole and indirect interactions. The resulting ground state phase diagrams are analysed (numerically) in detail. We have found that for some model parameters the phase diagrams contain a region dominated by several phases only with periods up to nine lattice constants. The remaining phase diagrams reveal a complex structure of usually long periodic phases. We also discuss a possible role of surace states in phase transitions.Comment: 16 pages, 5 Postscript figures; Physical Review B15 (15 August 1996), in pres

    Effects of neutrino oscillations and neutrino magnetic moments on elastic neutrino-electron scattering

    Full text link
    We consider elastic antineutrino-electron scattering taking into account possible effects of neutrino masses and mixing and of neutrino magnetic moments and electric dipole moments. Having in mind antineutrinos produced in a nuclear reactor we compute, in particular, the weak-electromagnetic interference terms which are linear in the magnetic (electric dipole) moments and also in the neutrino masses. We show that these terms are, however, suppressed compared to the pure weak and electromagnetic cross section. We also comment upon the possibility of using the electromagnetic cross section to investigate neutrino oscillations.Comment: 12 pages, REVTEX file, no figures, submitted to Phys.Rev.

    The Electron-Phonon Interaction in the Presence of Strong Correlations

    Full text link
    We investigate the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view: the strong interaction is responsible for vertex corrections, which are strongly dependent on the vFq/ωv_Fq/\omega ratio. These corrections generically lead to a strong suppression of the effective coupling between quasiparticles mediated by a single phonon exchange in the vFq/ω≫1v_Fq/\omega \gg 1 limit. However, such effect is not present when vFq/ωâ‰Ș1v_Fq/\omega \ll 1. Analyzing the Landau stability criterion, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. A detailed analysis is then carried out using a slave-boson approach for the infinite-U three-band Hubbard model. In the presence of a coupling between the local hole density and a dispersionless optical phonon, we explicitly confirm the strong dependence of the hole-phonon coupling on the transferred momentum versus frequency ratio. We also find that the exchange of phonons leads to an unstable phase with negative compressibility already at small values of the bare hole-phonon coupling. Close to the unstable region, we detect Cooper instabilities both in s- and d-wave channels supporting a possible connection between phase separation and superconductivity in strongly correlated systems.Comment: LateX 3.14, 04.11.1994 Preprint no.101
    • 

    corecore